SWARNANDHRA COLLEGE OF ENGINEERING & TECHNOLOGY ## (Autonomous) SEETHARAMAPURAM, NARSAPUR-534280 W.G.DT. AP ### DEPARTMENT OF BASIC SCIENCES AND HUMANITIES #### TEACHING PLAN | Course Code | Course Title | Year/Sem | Branch | Contact
hr/week | Academic
Year | |-------------|-------------------------|----------|------------------|--------------------|------------------| | 24BC2T01 | DISCRETE
MATHEMATICS | I/II | BCA
(Honours) | 5 | 2024-2025 | ### Course Objectives: The main objectives of the course are - To learn the mathematical foundations for Computer Science. - · Topics covered essential for understanding various courses ### Course Outcomes (CO's): At the end of the course, student will be able to: | CO No. | A A STATE OF THE S | | | | |--------|--|------|--|--| | CO1 | Understand and apply propositional and predicate calculus, including logical connectives, truth tables, and inference rules. | . K2 | | | | CO2 | Understand and apply basics theory concepts, including relations, functions, and the principle of inclusion and exclusion. | K2 | | | | CO3 | Apply combinatorial techniques (permutations, combinations) and solve recurrence relations using generating functions. | К3 | | | | CO4 | CO4 Understand and apply fundamental graph theory concepts, including graph representations, connectivity, and traversal algorithms. | | | | | CO5 | Understand and apply finite state machines, including DFA, NFA, and the pumping lemma for regular languages. | K2 | | | | Week
No | - Outcome | Blooms
Level | | Topic / Activity | Tex
Book | 1 (1 | Delivery Metho | |-------------------------|----------------------------|---|-------|---|---------------------------------|------|--| | | | | U | NIT-I (Mathematic | al Logic) | | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 | | | | | 1,1 | Propositional Calculus: Statements and Notations | Т1& Т | '2 1 | | | | , | | 1.2 | Connectives | T1& T | 2 1 | | | | | | 1.3 | Well Formed
Formulas | T ₁ & T ₂ | 2 1 | 1 | | | | | 1.4 | Tautologies | T1& T2 | , 1 | | | | | | 1.5 | Equivalence of formulae | T1& T2 | _1 | | | | Understand | | 1.6 | Duality law | T ₁ & T ₂ | 1 | 2 | | | and apply propositional | | 1.7 | Tautological implications | T1& T2 | 1 | | | | and predicate | | 1.8 | Normal Forms | T ₁ & T ₂ | 2 | Chalk
& | | 1,2 calculus, including | including | 100000000000000000000000000000000000000 | 1.9 | Theory of Inference
for Statement
Calculus | T ₁ & T ₂ | 2 | Board,
PPT, | | | connectives, | | 1.10 | Consistency of
Premises | T ₁ & T ₂ | 1 | Interactive Whiteboard | | | truth tables and inference | | 1.11 | Indirect Method of
Proof | T ₁ & T ₂ | ı | ing | | | rules. | | | Predicate Calculus: Predicates, Predicative Logic | T ₁ & T ₂ | 2 | | | | | | | Statement
Functions | T ₁ & T ₂ | 1 | | | | | | 1.14 | Variables and Quantifiers, | T ₁ & T ₂ | 2 | 1 1 2 | | | | 1. | .15 1 | Free and Bound | T ₁ & T ₂ | 2 | | | | | 7 | .16 I | or Predicate | T ₁ & T ₂ | 1 | ×1 × × | | | | | | -II (Sets and Function | ons) | | | | | Understand | | .1 S | ets, Relations | T ₁ & T ₂ | 1 | Chalk | | 4 | and apply
basic set | K2 2. | 2 Fu | inctions | T ₁ & T ₂ | 1 | &
Board, | | | Dable set | 2. | 3 CI | osures of | T ₁ & T ₂ | 1 | PPT, | | | theory concepts, | | | Equivalence
Relations | | | Interactive Whiteboard | |------|--------------------------------------|---|-----|---|---------------------------------|-----|------------------------------| | | including | | 2,4 | Partial ordering
well ordering | T ₁ & T ₂ | 1 | ing | | | relations, | | 2.5 | Lattice | T1& T2 | . 1 | | | | the principles of inclusion | | 2.6 | Sum of products
and product of
sums | T ₁ & T ₂ | 2 | a rife. | | | and exclusion. | xclusion. | 2.7 | principle of
Inclusions and
Exclusions | T ₁ & T ₂ | 2 | | | 3 | | | | Mid I Exam | | | | | - | | | 1 | UNIT-III (Combinate | ry) | | | | | | 14 | 3.1 | Permutations | T ₁ & T ₂ | - 1 | | | | Apply | | 3.2 | Combinations | T ₁ & T ₂ | 1 | | | | combinatorial
techniques | | 3.3 | Pigeonhole principle | T ₁ & T ₂ | l | | | | (permutations | К3 | 3.4 | Recurrence
Relation: Linear
Recurrence
Relations | T ₁ & T ₂ | 2 | Chalk
&
Board, | | 5, 6 | recurrence
relations using | | 3.5 | Non-linear
Recurrence
Relations | T ₁ & T ₂ | 1 | PPT , Interactive Whiteboard | | | generating
functions. | | 3.6 | Solving Recurrence Relation using Generating Functions. | T ₁ & T ₂ | 2 | ing | | | | | | UNIT-IV (Graphs) | | | 9 1 | | _ | | | 4.1 | Introduction to graphs | T ₁ & T ₂ | 1 | | | | including
graph
representation | and apply fundamental graph theory concepts, including graph representation | 4.2 | Graphs
terminologies | T ₁ & T ₂ | 1 | Challe | | | | | 4.3 | Representation of graphs | T ₁ & T ₂ | 1 | Chalk
& | | 7,8 | | | 4.4 | Isomorphism | T1& T2 | 2 | Board,
PPT, | | 7,0 | | | 4.5 | Connectivity & Paths: Connectivity | T ₁ & T ₂ | 2 | Interactive Whiteboard | | | | | 4.6 | Euler and
Hamiltonian Paths | T ₁ & T ₂ | 2 | ing | | | s, connectivity
and traversal | | 4.7 | Introduction to tree | T ₁ & T ₂ | 2 | Frequency (| | | algorithms. | | 4.8 | Tree traversals | T ₁ & T ₂ | 1 | | | Total N | No. of Classes | | | 4 | | 60 | | |------------|--|-----------------------------|---------------------------|---|---------------------------------|-------|--| | | | | | Mid II Exam | | la de | | | | pumping lemma for regular languages. | 5.5 | Application of
Pumping | T ₁ & T ₂ | 1 | | | | 9, 10 D ar | | state nes, ing NFA K2 e ing | 5.4 | Grammars and Language, | T ₁ & T ₂ | 1 | Chalk & Board, PPT, Interactive Whiteboard ing | | | including
DFA, NFA
and the | | 5.3 | Non-Deterministic
Finite Automata
Lemma for Regular
Language (NFA) | T ₁ & T ₂ | 1 | | | | and apply
finite state
machines, | | 5.2 | Deterministic
Finite Automata
(DFA) | T ₁ & T ₂ | 1 | | | | Understand | | 5.1 | Finite State
Machine | T ₁ & T ₂ | 1 | | | | | | UNIT | I-V (Modeling Comp | utation) | | _ | | | | | 4.11 | cut- set, cut-vertex. | T ₁ & T ₂ | 1 | | | | | | 4.10 | Breadth first
search, Depth first
search | T ₁ & T ₂ | 2 | | | | | | 4.9 | spanning tree and
tree searches | T ₁ & T ₂ | 2 | | #### Recommended Text Books for Reading: - T₁: Discrete Mathematics and its Applications with Combinatory and Graph Theory, 7th edition by Kenneth H. Rosen. - T₂: Discrete Mathematical Structures with Applications to Computer Science, J.P Tremblay, R. Manohar, TMH, 1997. - T₃: Elements of Discrete Mathematics -A Computer Oriented Approach, C. L. Liu P. Mohapatra, 3rdEdition, Tata Mc Graw Hill. - 4. T4: Discrete Mathematics, Anopen Introduction, Oscar Levin, 3rd edition. ### Reference Text Books: - Elements of Discrete Mathematics by C.L. Liuand D.P. Mohapatra, TMH, 2012. - A Modern Approach to Discrete Mathematics and Structure by J.K. Mantri &T. K Tripathy, Laxmi Publication. #### Web Resources: - 1. https://onlinecourses.nptel.ac.in/noc22_cs123/preview - 2. https://discrete.openmathbooks.org/preview/ - 3. https://mathworld.wolfram.com/topics/DiscreteMathematics.html - 4. https://www.csie.ntu.edu.tw/~sylee/courses/dm/resources.htm Faculty Head of the Department A-hard Principal