SWARNANDHRA COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous)

SEETHARAMAPURAM, NARSAPUR-534280 W.G.DT. AP

DEPARTMENT OF BASIC SCIENCES AND HUMANITIES

TEACHING PLAN

Course Code	Course Title	Year/Sem	Branch	Contact hr/week	Academic Year
24BC2T01	DISCRETE MATHEMATICS	I/II	BCA (Honours)	5	2024-2025

Course Objectives:

The main objectives of the course are

- To learn the mathematical foundations for Computer Science.
- · Topics covered essential for understanding various courses

Course Outcomes (CO's): At the end of the course, student will be able to:

CO No.	A A STATE OF THE S			
CO1	Understand and apply propositional and predicate calculus, including logical connectives, truth tables, and inference rules.	. K2		
CO2	Understand and apply basics theory concepts, including relations, functions, and the principle of inclusion and exclusion.	K2		
CO3	Apply combinatorial techniques (permutations, combinations) and solve recurrence relations using generating functions.	К3		
CO4	CO4 Understand and apply fundamental graph theory concepts, including graph representations, connectivity, and traversal algorithms.			
CO5	Understand and apply finite state machines, including DFA, NFA, and the pumping lemma for regular languages.	K2		

Week No	- Outcome	Blooms Level		Topic / Activity	Tex Book	1 (1	Delivery Metho
			U	NIT-I (Mathematic	al Logic)		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
			1,1	Propositional Calculus: Statements and Notations	Т1& Т	'2 1	
	,		1.2	Connectives	T1& T	2 1	
			1.3	Well Formed Formulas	T ₁ & T ₂	2 1	1
			1.4	Tautologies	T1& T2	, 1	
			1.5	Equivalence of formulae	T1& T2	_1	
	Understand		1.6	Duality law	T ₁ & T ₂	1	2
	and apply propositional		1.7	Tautological implications	T1& T2	1	
	and predicate		1.8	Normal Forms	T ₁ & T ₂	2	Chalk &
1,2 calculus, including	including	100000000000000000000000000000000000000	1.9	Theory of Inference for Statement Calculus	T ₁ & T ₂	2	Board, PPT,
	connectives,		1.10	Consistency of Premises	T ₁ & T ₂	1	Interactive Whiteboard
	truth tables and inference		1.11	Indirect Method of Proof	T ₁ & T ₂	ı	ing
	rules.			Predicate Calculus: Predicates, Predicative Logic	T ₁ & T ₂	2	
				Statement Functions	T ₁ & T ₂	1	
			1.14	Variables and Quantifiers,	T ₁ & T ₂	2	1 1 2
		1.	.15 1	Free and Bound	T ₁ & T ₂	2	
		7	.16 I	or Predicate	T ₁ & T ₂	1	×1 × ×
				-II (Sets and Function	ons)		
	Understand		.1 S	ets, Relations	T ₁ & T ₂	1	Chalk
4	and apply basic set	K2 2.	2 Fu	inctions	T ₁ & T ₂	1	& Board,
	Dable set	2.	3 CI	osures of	T ₁ & T ₂	1	PPT,

	theory concepts,			Equivalence Relations			Interactive Whiteboard
	including		2,4	Partial ordering well ordering	T ₁ & T ₂	1	ing
	relations,		2.5	Lattice	T1& T2	. 1	
	the principles of inclusion		2.6	Sum of products and product of sums	T ₁ & T ₂	2	a rife.
	and exclusion.	xclusion.	2.7	principle of Inclusions and Exclusions	T ₁ & T ₂	2	
3				Mid I Exam			
-			1	UNIT-III (Combinate	ry)		
		14	3.1	Permutations	T ₁ & T ₂	- 1	
	Apply		3.2	Combinations	T ₁ & T ₂	1	
	combinatorial techniques		3.3	Pigeonhole principle	T ₁ & T ₂	l	
	(permutations	К3	3.4	Recurrence Relation: Linear Recurrence Relations	T ₁ & T ₂	2	Chalk & Board,
5, 6	recurrence relations using		3.5	Non-linear Recurrence Relations	T ₁ & T ₂	1	PPT , Interactive Whiteboard
	generating functions.		3.6	Solving Recurrence Relation using Generating Functions.	T ₁ & T ₂	2	ing
				UNIT-IV (Graphs)			9 1
_			4.1	Introduction to graphs	T ₁ & T ₂	1	
	including graph representation	and apply fundamental graph theory concepts, including graph representation	4.2	Graphs terminologies	T ₁ & T ₂	1	Challe
			4.3	Representation of graphs	T ₁ & T ₂	1	Chalk &
7,8			4.4	Isomorphism	T1& T2	2	Board, PPT,
7,0			4.5	Connectivity & Paths: Connectivity	T ₁ & T ₂	2	Interactive Whiteboard
			4.6	Euler and Hamiltonian Paths	T ₁ & T ₂	2	ing
	s, connectivity and traversal		4.7	Introduction to tree	T ₁ & T ₂	2	Frequency (
	algorithms.		4.8	Tree traversals	T ₁ & T ₂	1	

Total N	No. of Classes			4		60	
				Mid II Exam		la de	
	pumping lemma for regular languages.	5.5	Application of Pumping	T ₁ & T ₂	1		
9, 10 D ar		state nes, ing NFA K2 e ing	5.4	Grammars and Language,	T ₁ & T ₂	1	Chalk & Board, PPT, Interactive Whiteboard ing
	including DFA, NFA and the		5.3	Non-Deterministic Finite Automata Lemma for Regular Language (NFA)	T ₁ & T ₂	1	
	and apply finite state machines,		5.2	Deterministic Finite Automata (DFA)	T ₁ & T ₂	1	
	Understand		5.1	Finite State Machine	T ₁ & T ₂	1	
			UNIT	I-V (Modeling Comp	utation)		_
			4.11	cut- set, cut-vertex.	T ₁ & T ₂	1	
			4.10	Breadth first search, Depth first search	T ₁ & T ₂	2	
			4.9	spanning tree and tree searches	T ₁ & T ₂	2	

Recommended Text Books for Reading:

- T₁: Discrete Mathematics and its Applications with Combinatory and Graph Theory, 7th edition by Kenneth H. Rosen.
- T₂: Discrete Mathematical Structures with Applications to Computer Science, J.P Tremblay, R. Manohar, TMH, 1997.
- T₃: Elements of Discrete Mathematics -A Computer Oriented Approach, C. L. Liu P. Mohapatra, 3rdEdition, Tata Mc Graw Hill.
- 4. T4: Discrete Mathematics, Anopen Introduction, Oscar Levin, 3rd edition.

Reference Text Books:

- Elements of Discrete Mathematics by C.L. Liuand D.P. Mohapatra, TMH, 2012.
- A Modern Approach to Discrete Mathematics and Structure by J.K. Mantri &T. K Tripathy, Laxmi Publication.

Web Resources:

- 1. https://onlinecourses.nptel.ac.in/noc22_cs123/preview
- 2. https://discrete.openmathbooks.org/preview/
- 3. https://mathworld.wolfram.com/topics/DiscreteMathematics.html
- 4. https://www.csie.ntu.edu.tw/~sylee/courses/dm/resources.htm

Faculty

Head of the Department

A-hard Principal