SWARNANDHRA COLLEGE of ENGINEERING & TECHNOLOGY (Autonomous) Seetharampuram, NARSAPUR, W.G. Dt., 534 280. DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Course Code	Course Title	Sem	Branch	Contact Hrs/Week	Academic Year	Date of Commence ment of semester
23EC4T01	Electro Magnetic Waves and Transmission Lines	IV	ECE	5	2024-25	16-12-2024

COURSE OUTCOMES:

At the end of the Electro Magnetic Waves and Transmission Lines Course students should be able to

- CO1: Determine the basics of Electrostatics by using Coulomb's law and Gauss law. (K3)
- CO2: Illustrate Magneto statics and Max well Equations of Electromagnetic fields, depending up on the media. (K3)
- CO3: Analyze the Electromagnetic Wave Propagation in dielectric and conducting media. (K4)
- CO4: Focus on propagation problems of Electromagnetic Waves through Transmission Lines

and its design. (K4)

Unit / No.	Out Comes & Blooms Level		Topics/Activity	Text/Ref Book	Total periods	Delivery Method
		I. Elec	trostatics:			
	CO1: Determine	1.1	Review of Co-ordinate Systems: Rectangular Co-ordinate Systems	T1, T2	01	
1	the basics of	1.2	Cylindrical Co-ordinate Systems	T1, R2	01	CI 11 0
	Electrostatics by	1.3	Spherical Co-ordinate Systems	T1, R2	01	Chalk &
	using Coulomb's	1.4	Conversion from one coordinate system to another system	T1, R1	01	Talk, PPT &
	law and Gauss	1.5	Coulombs law, Electric Field Intensity, Gauss law	T1, R2	01	Tutorial
	law. (K3)	1.6	Applications of Gauss law	T1, R2	01	
		1.7	Electric potential, Relations between E and V	T1, R3	01	
		1.8	Maxwell's Two Equations for Electrostatic Fields	T1, R2	01	
		1.8	Convection and Conduction Currents, Energy density	T1, R 2	01	
		1.9	Dielectric constant, Types of dielectrics, Poisson's and Laplace's Equations	T1, R2	01	
		1.10	Related problems	T1, R1	01	
		1.11	Class test-1	T1, R1	01	1
			Total		11	

			neto statics, Maxwell's Equations			
2	CO2:	2.1	e Varying Fields) Biot-Savart Law, Amperes Circuital	T1, T2	01	Chalk &
	Illustrate Magneto	2.2	Law Applications of Amperes Circuital	T1, T2	01	Talk, PPT &
	statics and Max well		Law, Magnetic Flux Density	T1 T0	01	Tutorial
	Equations of	2.3	Maxwell's Two Equations for Magneto static Fields	T1, T2	01	Video
	Electromagnetic fields, depending up	2.4	Magnetic Scalar and Vector Potentials, Forces due to Magnetic	T1, T2	01	Lectures
	on the media. (K3)	2.5	Fields Faraday's Law and Transformer	T1, T2		Problem Solving
		2.6	EMF Continuity equation for time varying	T1, R1	01	-
		2.0	fields, Inconsistency of Ampere's Law	11, KI	01	
		2.7	Conduction and displacement current densities, Maxwell's equations in different final Forms	T1, R1	01	
		2.8	Maxwell's equations in Word statements	T2, R2	01	
		2.9	Conditions at a Boundary Surface: Dielectric-Dielectric	T1, R2	01	
		2.10	Conditions at a Boundary Surface: Dielectric –Conductor Interfaces	T1, R2	01	
		2.11	Dispersive medium, phase velocity	T1, R1	01	
		2.12	Group velocity, Beat phenomenon	T1, R1	01	
		2.13	Related problems	T1, R1	01	
		2.14	Class test-2	T1, R1	01	
			Total		14	
			M Wave Characteristics			_
	CO3: Analyze the	3.1	Wave Equations for Conducting and Perfect Dielectric Media	T2, R1	01	
3	Electromagnetic	3.2	Uniform Plane Waves-Definition,	T1, R2	01	
3	Wave Propagation	3.3	Relations Between E&H		01	_
	in dielectric and	3.4	Wave propagation in lossless and Conducting (lossy) media	T2, R1	01	
	conducting media. (K4)	3.5	Conductors & Dielectrics- characterization,	T2, R2	01	Chalk
		3.6	Wave propagation in good conductors, good dielectrics and free space	T2, R 2	01	Talk, PPT & Tutoria
		3.7	skin depth, Polarization & Types	T1, R1	01	
		3.8	Normal Incidence for Perfect Conductor	T1, R3	01	
		3.9	Normal Incidences for Perfect Dielectric	T1, R3	01	
		3.10	Oblique Incidences for Perfect Conductor	T1, R3	01	
		3.11	Oblique Incidences for Perfect Dielectric	T1, R3	01	
		3.12	Brewster Angle, Critical Angle and Total Internal Reflection	T1, R2	01	_

		3.13	Poynting Vector and Poynting Theorem	R1, R2	01	
		3.14	Related Problems	T1, R2	01	-
		3.15	Class Test-3 Total	T1, R1	15	-
	CO4: Focus on	IV.Tra	nsmission Lines-I		13	
	propagation problems	4.1	Types and parameters	T2, R2	01	-
		4.2	Transmission line Equations,	T2, R2	01	
	of Electromagnetic	4.3	Primary and secondary constants.	T2, R1	01	-
4	Waves through	4.4	T & π Equivalent Circuits	T1, R1	01	Chalk &
	Transmission Lines	4.5	Infinite Line concepts,	T1, R1	01	Talk,
	and its design. (K4)	4.6	Propagation Constant, Phase and Group Velocities	T2, R2	01	PPT & Tutoria
		4.7	lossless lines, Distortion less	T1, R1	01	LMS.
		4.8	Problems	T1, R1	01	
		4.9	Class Test-4		01	-
			Total		09	-
5	CO4: Focus on	V. Tra	nsmission Lines-II			
	propagation problems of Electromagnetic	5.1	Input Impedance Relations, Shorted Lines, Open Circuited Lines, and	T1, R1	01	
	Waves through	5.2	Matched Lines Reflection Coefficient, VSWR, Average Power,	T1, R1	01	Chalk &
	Transmission Lines and its design. (K4)	5.3	Low loss radio frequency and UHF Transmission lines	T1, R1	01	– Talk, PPT &
		5.4	UHF Lines as Circuit Elements	T1, R1	01	Tutoria
		5.5	Smith Chart- Construction	T1, R1	01	 Video Lecture
		5.6	Smith Chart- Applications	T1, R2	01	,
		5.7	Quarter wave transformer	T1, R2	01	Problem
		5.8	Single Stub Matching	T1, R2	01	- Solving
		5.9	Problems	T1, R2	01	_
	Content beyond Syllabus	5.10	Duct propagation	T1, R2	01	
	-	5.11	Class Test-5		01	
			Total		11	
			Total Proposed Number of Classes		60	

TEXT BO	0KS:
S. No.	AUTHORS/BOOK TITLE/EDITION (latest)/PUBLISHER/YEAR OF PUBLICATION
T1	Matthew N.O. Sadiku - Principles of Electromagnetics, Oxford Univ. Press, 6th ed., 2017.
Т2	E.C. Jordan and K.G. Balmain- Electromagnetic Waves and Radiating Systems PHI, 2nd Edition, 2012.
REFEREN	CE BOOKS:
S. No.	AUTHORS/BOOK TITLE/EDITION (latest)/PUBLISHER/YEAR OF PUBLICATION
R1	William H. Hayt, John A. Buck, Jaleel M. Akhtar Engineering Electromagnetics, TMH, 9 th edition, 2020.
R2	John D. Ryder - Networks, Lines and Fields, Second Edition, Pearson Education, 2015

Web Details						
1	www.nrao.edu					
2	www.physics.bu.edu					
3	www.gnits.ac.in/sites/default/files/ONLINERESOURCES/EMWTL.pdf					
4	www.nptel.emwtl.in					
5	https://www.youtube.com/watch?v=pGSUXGf8P48					
6	www.slideshare.net					
		Name	Signature			
1	Faculty I	Mr. Sekhar Didde	O zalenno			
П	Faculty II	Dr. B. Raman Kumar	Skourt			
Ш	Course Coordinator	Mr. Sekhar Didde	(Chileur)			
1V	Module Coordinator	Dr. B. Sadasiva Rao	V. I			
V	Programme Coordinator	Dr. B. Subrahmanyeswara Rao	Binton			

Rao Seatharan

A PRINCIPAL