Seetharamapuram, NARASAPUR - Pin: 534 280 #### DEPARTMENT OF MECHANICAL ENGINEERING #### LESSON PLAN | Course
Code | CourseTitle | Semester | Branches | Conduct
Periods
/Week | A.Y | Date of
commencement of
Semester | |----------------|-------------|----------|---------------------------|-----------------------------|---------|--| | 23ME4T02 | FMHM | IV | Mechanical
Engineering | 5 | 2024-25 | 16-12-2024 | | S.N | COURSE OUTCOMES | | | | | BTKL | | |------|--|----------------|--|---------------------------------|------------------|--------------------|--| | COI | Ol Describe the basic concepts of fluid properties. | | | K2 | | | | | CO2 | | | of fluids in static and dynamic conditions. | | | K3 | | | CO3 | | | vertheory,flowseparationanddimensionalanalys | is. | | К3 | | | CO4 | 2.5ct (3.5) | | mic forces of jet on vanes in different position | | | K3 | | | CO5 | | | Principles and performance evaluation of hydro | | | K2 | | | CO6 | Analyze the | working F | rinciples and performance evaluation of pumps | | | K4 | | | UNIT | Out
Comes/
BTKL | Topic
s No. | Topics/Activity | Text Book
/Reference | Condu
ct Hour | Delivery
Method | | | | CO1. Describe the basic concepts of fluid properties. (K2) | - 27 | 1. Fluid statics: | | | | | | | | 1.1 | Physical properties of fluids - specific gravity, viscosity and its significance | T ₁ & T ₂ | 1 | | | | | | 1.2 | Surface tension, capillarity | T ₁ &W ₁ | 2 | | | | 1 | | 1.3 | vapor pressure. Atmospheric, gauge and vacuum pressure | T ₁ | 1 | | | | | | L4 | Measurement of pressure – Manometers -
Piezometer | T ₁ & R ₁ | 1 | | | | | | 1.5 | U-tube, inverted and differential manometers | T ₁ & R ₁ | 1 | Chalk, | | | | | 1.6 | Pascal's & hydrostatic laws | T2& R2 | 1 | Talk,
PPT | | | | | 1.7 | Buoyancy and floatation: Meta center,
stability of floating body, Submerged
bodies | T ₂ & R ₂ | 1 | | | | | | 1.8 | Calculation of meta center height. Stability analysis and applications. | T1 | 2 | | | | | | | Total | | 10 | | | Seetharamapuram. NARASAPUR - Pin: 534 280 | | S. | | 2. Fluid Kinematics, Fluid dynamics, Close | ed conduit fl | ow | | |---|------------------------------------|--|---|---------------------------------|----|--------------| | CO2. Apply the mechanics of fluids in static and dynamic conditions. | ition | 2.1 | Fluid Kinematics: Introduction, flow types. | T ₁ &T ₂ | 1 | | | | c cond | 2.2 | Equation of continuity for one dimensional flow, | $T_1\&\ R_1$ | 1 | | | | tami | 2.3 | Circulation and vorticity | $T_1 \& R_1$ | 1 | 1 | | | ıd dyn | 2.4 | Stream line, path line and streak lines and stream tube | T ₁ & R ₁ | 1 | | | | atic ar | 2.5 | Stream function and velocity potential function,
differences and relation between them | T ₁ &T ₃ | 1 | | | п | iids in st
(K3) | 2.6 | Condition for irrotational flow, flownet, source and sink, double and vortex flow. | $T_1 \& T_2$ | 1 | Chalk | | | of fluic
(A | 2.7 | Fluid dynamics: surface and body forces –
Euler's equations | T ₁ & R ₁ | 2 | Talk&
PPT | | | nics (| 2.8 | Bernoulli's equations, momentum equation | $T_1\&\ R_1$ | 1 | | | | char | 2.9 | Applications, force on pipe bend | T ₁ & R ₁ | 1 | | | | he me | 2.10 | Closed conduit flow: Reynold's experiment-
Darcy Weisbach equation | T_1 & R_1 | 1 | | | | ply t | 2.11 | Minor losses in pipes | | 2 | | | | 2. A _l | 2.12 | pipes in series and pipes in parallel | | 1 | | | | CO) | 2,13 | total energy line hydraulic gradient line | T ₁ & R ₁ | 1 | | | | | l. | Total | | 24 | 15 | | | E | | 3. Boundary Layer Theory, Dimensio | nal Analysis | | | | CO3. ApplytheBoundarylayertheory,flowseparationan ddimensionalanalysis (K3) | 3.1 | Boundary Layer Theory: Introduction,
momentum integral equation | T ₁ &T ₂ | 1 | | | | | wsepai
(3) | 3.2 | displacement, momentum and energy
thickness | T ₁ & R ₁ | 2 | | | | ry,flo
ysis (J | 3.3 | separation of boundary layer, control of flow separation | T ₁ & R ₁ | 1 | | | | CO3.
rlayertheor
sionalanaly | 3.4 | Stream lined body, Bluff body and its applications | $T_1 \& R_1$ | 2 | Chalk | | | | 3.5 | basic concepts of velocity profiles | $T_1&T_3$ | 1 | Talké
PPT | | | undar | 3.6 | Dimensional Analysis: Dimensions and Units,
Dimensional Homogeneity | T ₁ &T ₃ | 1 | | | | | 2.7 | Non dimensionalization of equations | $T_1 \& T_2$ | 2 | | | | eBo
d | 3.7 | | | | | | | olytheBo
d | 3.8 | Method of repeating variables | $T_1 \& R_1$ | 1 | | Seetharamapuram, NARASAPUR - Pin: 534 280 Total 12 | | g | | 4. Basics of turbo machinery, Hydraulic | Curbines | | | |---------|--|-----|---|---------------------------------|----|----------------| | | CO4. Apply the hydrodynamic forces of jet on vanes in different positions. [K3] | 4.1 | Basics of turbo machinery:hydrodynamic
force of jets on stationary flat, inclined, and
curved vanes | T ₁ & T ₂ | 2 | | | | pply the hydrodynamic forces o | 4.2 | hydrodynamic force of jets on moving flat,
inclined, and curved vanes, jet striking centrally
and at tip | T ₁ & T ₂ | 2 | | | IV | ynan
it pos | 4.3 | Velocity diagrams, work done and efficiency, flow
over radial vanes. | T ₁ & T ₂ | 2 | Chalk, | | LV | /drod | 4.4 | Hydraulic Turbines: classification of turbines,
impulse and reaction turbines | T ₂ & R ₁ | 2 | Talk,
&PPT, | | | the hy
in di | 4,5 | Pelton wheel -working proportions, work done,
efficiencies, hydraulic design | T ₁ & R ₁ | 2 | Experin | | | pply anes | 4.6 | Francis turbine -working proportions, work done,
efficiencies, hydraulic design | T ₁ & R ₁ | 2 | | | CO4. Ap | CO4. A | 4.7 | Kaplan turbine-working proportions, work done,
efficiencies, hydraulic design -draft tube-theory-
functions and efficiency. | T ₁ & R ₁ | 2 | | | | | | | Total | 12 | | | | | 5. | Performance of hydraulic turbines, Centrifugal
Reciprocating pumps | pumps, | | | | | king Principles and performance
lic pump and turbines. (K2),
ing Principles and performance
tion of pumps | 5.1 | Performance of hydraulic turbines:
Geometric similarity, Unit and specific
quantities | T ₁ & T ₂ | Ī | | | | perf
nes. (
perfo | 5.2 | characteristic curves | T1 & T2 | 2 | | | | s and
turbi
and | 5.3 | governing of turbines, | T1 & T2 | 2 | | | | te working Principles
sydraulic pump and to
working Principles
evaluation of pumps | 5.4 | selection of type of turbine, cavitation, surge
tank, water hammer | T ₁ & T ₂ | 2 | | | v | g Priug Priu | 5.5 | Hydraulic systems- hydraulic ram, hydraulic lift, hydraulic coupling. | T ₁ & T ₂ | 1 | Chalk, | | v | orkin
orking
duatio | 5.6 | Fluidics – amplifiers, sensors and oscillators. Advantages, limitations and applications. | T1 & T2 | 2 | Talk & PPT | | ٧ | he w
hydr
e w
eva | 5.7 | Centrifugal pumps: classification, working | T ₁ & T ₂ | 1 | | | v | the w
he w | | 1.1 | T ₁ & T ₂ | 1 | | | • | cribe the working Principles
tion of hydraulic pump and t
lyze the working Principles
evaluation of pumps | 5.8 | work done - manometric head- losses and
efficiencies-specific speed | 1100 12 | 2 | | | v | Describe the waluation of hyd
Analyze the w | | | T ₁ & T ₂ | 1 | | | • | CO5: Describe the working Principles and performs evaluation of hydraulic pump and turbines. (K2), CO6: Analyze the working Principles and performa evaluation of pumps | 5.8 | efficiencies-specific speed | | - | | Seetharamapuram, NARASAPUR - Pin: 534 280 | 5.12 | Reciprocating pumps: Working, Discharge,
slip | 1 | |------|--|----| | 5.13 | Indicator diagrams | 1 | | | Total | 18 | | | Cumulative Proposed Periods | 67 | | Text B | ooks: | | | | | |--------|--|--|--|--|--| | S.No | Authors, Book Title, Edition, Publisher, Year of Publication | | | | | | T1 | P. M. Modi and S. M. Seth, Hydraulics and Fluid Mechanics, Standard Book House, 2019 | | | | | | T2 | K. Subrahmanya, Theory and Applications of Fluid Mechanics, Tata McGraw Hill,2 nd edition 2018 | | | | | | Refere | nce Books: | | | | | | S.No. | Authors, Book Title, Edition, Publisher, Year of Publication | | | | | | R1 | R. K. Bansal, A text of Fluid mechanics and hydraulic machines, Laxmi Publications (P) Ltd., New Delhi 11 th edition, 2024. | | | | | | R2 | Narayana Pillai, Principles of Fluid Mechanics and Fluid Machines, UniversitiesPress Pvt Ltd. Hyderabad. 3rd Edition 2009. | | | | | | R3 | Fluid Mechanics by Frank M. White, Henry Xue, Tata McGraw Hill, 9th edition ,2022. | | | | | | | 1. https://archive.nptel.ac.in/courses/112/105/112105269/ | | | | | | Web- | 2. https://nptel.ac.in/courses/112104118 | | | | | | ref | NPTEL :: Mechanical Engineering - NOC:Introduction to Fluid Mechanics | | | | | | | https://nptel.ac.in/courses/105103192 | | | | | | S.NO. | Details | Name | Signature with Date | |-------|---------------------|-------------------------|---------------------| | i. | Faculty | Dr. R. Lalitha Narayana | hi S | | ii. | Course Coordinator | Dr. R. Lalitha Narayana | be & | | iii. | Module Coordinator | Dr. R. Lalitha Narayana | W. B | | iv. | Program Coordinator | Dr. Francis Luther King | Shelm Ko | Principal