SWARNANDHRA COLLEGE OF ENGINEEERIN G AND TECHNOLGY (AUTONOMOUS) # SEETHARAMPURAM, NARSAPUR-534280, WG- DT, AP DEPARTMENT OF MASTER OF COMPUTER APPLICATIONS ## **TEACHING PLAN** | Course
Code | Course
Title | Year / Sem. | Branch | Contact
Hr/
week | Academic
Year | Date of Commencement of Semester | |----------------|--------------------|-------------|--------|------------------------|------------------|----------------------------------| | 24MC1T01 | Data
Structures | I/I | MCA | 6 | 2024-25 | 16.09.2024 | # Course Outcomes (CO): At the end of the course, student will be able to - 1. Implement basic programs by using C concepts (K2) - 2. Implement C Program using Functions, Structures and Unions, Pointers (K3) - 3. Design advanced Data Structures using Non Linear Data Structures(K4) - 4. Create Hash Table for storing data(K4) - 5. Apply appropriate Sorting technique for a problem(K5) | Unit | Outcome
s/Blooms
Level | Topic | /Activity | Textb
ooks | Contact
hours | Delivery
method | | |------|------------------------------|-------|--|---|------------------|--------------------|--| | | | | UNIT- | | | | | | | | 1.1 | Introduction to c | T1 | 1 | | | | ļ | | 1.2 | Constants and
Variables | T1 | 1 | | | | | .= | 1.3 | Operators and expressions | Т1 | 1 | | | | | | | 1.4 | Arithmetic and
Relational
operators | T1 | 1 | | | | | 1.5 | Logical and
Assignment
operators | Т1 | 1 | | | | | | 1.6 | Increment and decrement operator | T1 | 1 | | | | | | 1.7 | Conditional ,
bitwise and
special operator | T1 | 1 | | | | | | 1.8 | Reading a character and Writing a character Formatted input | T1 | 1 | | |---|-----------------------|------|--|----|---|--------------------------| | | | 1.9 | and Formatted output | T1 | 1 | | | I | Impleme
I nt basic | 1.10 | Decision
making with if
statement | T1 | 1 | Chalk
& | | | by using | 1.11 | The if else statement | T1 | 1 | Board
Programm | | _ | C concepts (K2) | 1.12 | Nesting of ifelse statement and else if ladder | T1 | 1 | ing
Demonstra
tion | | | | 1.13 | The switch statement and goto statement | Т1 | 1 | | | | * | 1.14 | One dimensional array, Two dimensional array Multi- dimensional array | Т1 | 1 | | | | | | UNIT -I | I | | | | | | 2.1 | Introduction of functions, definition of functions | Т1 | 1 | | | | | 2.2 | Return values
and their types
function calls,
category of
functions | T1 | 1 | _ | | | | 2.3 | No argument
and no return
values and no
argument and
return values | T1 | 1 | 5 | | | | 2.4 | With argument and with return values and with argument and without return values | T1 | 1 | | ¥ | | T | | 1 | | | | |-----|---|------|--|----|---|------------------------| | | | 2.5 | Recursion, passing arrays to functions and passing strings to functions | T1 | 1 | 3 | | | 1 | 2.6 | Structures | T1 | 1 | - | | | | 2.7 | Arrays of structures, arrays within structures | T1 | 1 | | | | Impleme
nt C | 2.8 | Structures within structures | Т1 | 1 | Chalk | | II | Program using Function | 2.9 | Structures and functions | T1 | 1 | & | | | s, | 2.10 | Unions | T1 | 1 | Board
Programm | | | Structure s and | 2.11 | Size of structures | T1 | 1 | ing Demonstra | | | Unions,
Pointers | 2.12 | Bit fields,
Enum, Typedef | T1 | ţ | tion | | | (K3) | 2.13 | Pointers, | T1 | 1 | | | | | 2.14 | Chain of pointers, pointer expressions, | Т1 | 1 | | | | | 2.15 | Array pointers,
pointers as
function
argument | Т1 | 1 | | | | | 2.16 | Pointer to functions, pointer to structures | Т1 | 1 | | | | | | UNIT-II | I | | | | | Design
advanced | 3.1 | Single linked creation | T2 | 1 | Chalk | | | Data
Structur | 3.2 | Single linked operations | T2 | 1 | &
Board | | III | es using Non Linear Data Structur es (K4) | 3.3 | Reversing of an
single linked
list | T2 | î | Programm ing Demonstra | | | | 3.4 | Double linked
list, traversing
and searching
in double
linked list | T2 | 1 | tion | | | | | I Mid Exa | ms | | | | | | 3.5 | Double linked list Operations | T2 | 1 | | | | | 3.6 | Reversing of an double linked list Circular linked list, traversing and searching in circular linked list Circular linked | T2 T2 | 1 | | | |---|--|------|---|--|------|------------|---------------------------------------| | | | 3.8 | list Operations | | (IE) | | | | | | | UNIT -IV | 7 | | | | | | | 4.1 | Stack, Array implementation of stack, linked list implementation of stack | T2 | 1 | | | | | Create
Hash
Table for
storing
data
(K4) | 4.2 | Queue, array implementation of queue, | T2 | 1 | | | | | | 4.3 | Linked list implementation of queue | T2 | l | | | | | | 4.4 | Function calls | T2 | 1 | | | | | | 4.5 | Polish notation | T2 | Ï | Chalk
& | | | IV | | 4.6 | Hash table representation | T2 | ì | | | | | | (K4) | 4.7 | Hash functions,
collision
resolution | T2 | 1 | Board
Programm
ing
Demonstra | | | | 4.8 | Separate chaining | Т2 | | tion | | | | | 4.9 | Open
addressing,
linear probing,
quadratic
probing | T2 | 1 | | | | | | 4.10 | Double hashing, rehashing and extendible hashing | T2 | 1 | | | | Cont
ent
beyo
nd
Sylla
bus | | | and Queue
cation GFS and | Web
Resou
rces | 1 | - | | | | | | UNIT-V | V | | | |---|----------------------------|-----------------|---|----------------------|---|-------------------| | | | 5.1 | Sorting
techniques,
insertion sort,
selection sort | T2 | 1 | | | | | 5.2 | Merge sort,
bubble sort | T2 | 1 | | | | | 5.3 | Trees | T2 | 1 | | | | | 5.4 | Binary tree
terminology | T2 | 1 | | | | Apply | 5.5 | Traversal of
binary trees-
pre, post and
order traversal | Т2 | 1 | Chalk | | | appropri
ate | 5.6 | Search trees | T2 | 1 | & | | V | Sorting
techniqu | 5.7 | Definition of binary tree | T2 | 1 | Board | | | e for a
problem
(K5) | 5.8 | Binary search
tree, traversal,
searching | T2 | 1 | Demonstra
tion | | | | 5.9 | Finding,
insertion and
deletion of
binary tree | T2 | 1 | | | Cont
ent
beyo
nd
Sylla
bus | | AVL T
Implem | | Web
Resou
rces | 1 | | #### **Text Books:** - 1. E. Balaguruswamy, Programming in ANSI C TMH, 8 ed. 2018 - 2. Reema Thareja Data Structures Using C. Oxford, 2nd Edition, 2014 - 3. Mark Allen Weiss, Data Structures and Algorithm Analysis in C, 2nd ed, 2002 ## Reference Books: - 1. R. F. Gilberg and B.A. Forouzan, Data Structures: A Pseudocode Approach with C, Cengage Learning, 2nd Edition, 2004 - 2. A. S. Tanenbaum, Y. Langsam, and M.J. Augenstein, Data Structures using C –PHI/Pearson 2nd Education, 2012 - 3. Yashavant Kanetkar, Let Us C: Authentic Guide to C Programming Language,. BPB Publications, 17th ed, 2020. Faculty Head of the Department Principal