SWARNANDHRA COLLEGE OF ENGINEERING & TECHNOLOGY # (Autonomous) SEETHARAMAPURAM, NARSAPUR-534280 W.G.DT. AP ## DEPARTMENT OF BACHELOR OF COMPUTER APPLICATIONS(Honours) ### TEACHING PLAN | Course Code | Course Title | Year/Sem | Branch | Contact
hr/week | Academic
Year | |-------------|--------------------------------------|----------|--------------|--------------------|------------------| | 24BC1T06 | Numerical and
Statistical Methods | I/I | BCA(Honours) | 5 | 2024-2025 | #### Course Objectives: The main objectives of the course are - To learn how to perform error analysis for arithmetic operations. - To demonstrate working of various numerical methods. - To provide a basic understanding of the derivation and f methods of interpolation and numerical integration. - To impart knowledge of various statistical techniques. - To develop students understanding through laboratory activities to solve problems related to above stated concepts. Course Outcomes (Cos): At the end of the course, student will able to | CO No: | Course Outcome | Knowledge
Level(K)# | |--------|---|------------------------| | CO1 | Apply methods like Secant, Regula-Falsi, Newton-Raphson, and Fixed Point Iteration to solve equations and perform error analysis | КЗ | | CO2 | Solve systems of linear equations using methods like Gauss Elimination, Gauss-Jordan, Gauss-Seidel, and LU-Decomposition, and compute Eigenvalues and Eigenvectors. | К3 | | CO3 | Apply interpolation techniques (Newton's and Lagrange's methods) and numerical methods like Trapezoidal and Simpson's for differentiation and integration. | К3 | | CO4 | Analyze data using statistical measures like mean, median, mode, standard deviation, skewness, kurtosis, and correlation coefficients. | K4 | | CO5 | Understand and apply theorems of probability, including Bayes" Theorem and conditional probability, to solve problems. | К3 | | Veek
No | Outcome | Blooms
Level | Topic / Activity | | Text
Books | Conta
ct
Hour
s | Delivery Method | | |------------|---|-----------------|------------------|--|--------------------------|--------------------------|---|--------------------------------| | | | • | | UNIT-I | | 1.1 | | | | 1,2 | Apply methods like Secant, Regula-Falsi, | К3 | 1.1 | Introduction – Solutions of algebraic and transcendental equations: Bisection method | T ₁ &T2 | 4 | | | | | Newton- | | 1.2 | Secant method | $T_1&T_2$ | 1 | Chalk | | | | Raphson and Fixed Point Iteration to solve equations and perform error analysis. | | 1.3 | Regula -Falsi
method | T ₁ &T2 | 2 | &
Board, | | | | | 19107.1 | | 1.4 | Newton-Raphson
method | T ₁ &T2 | 3 | PPT, Interactive Whiteboarding | | | | | 1.5 | Fixed point iteration method | T ₁ &T2 | 2 | | | | E | | We I | | UNIT-II | artisti si | | | | | | Solve systems
of linear
equations | | 2.1 | Gauss
Elimination
method | T ₁ &T2 | 3 | | | | | using
methods like
Gauss | | 2.2 | Gauss Jordan
method. | T ₁ &T2 | 3 | | | | | Elimination,
Gauss - | | 2.3 | Gauss Seidal iteration method | T ₁ &T2 | 1 | Chalk
& | | | 3,4 | Jordan, Gauss Seidal and LU- Decompositio n and compute Eigen values and Eigen vectors. | | 2.4 | LU-
Decomposition
method | T ₁ &T2 | 3 | Board,
PPT, Interactive
Whiteboarding | | | | | | 2.5 | Eigen values and
Eigen vectors of
a square matrix. | T ₁ &T2 | 2 | | | | | | | | Mid I Exam | | | | | | Apply interpolation techniques (Newton's and Lagrange's method) and numerical methods like Trapezoidal and Simpson's for differentiation and integration. | К3 | 3.1
3.2
3.3
3.4
3.5
3.6 | Interpolation Forward and Backward differences Newton's forward formula Newton's backward formula Lagrange's interpolation and Lagrange's inverse interpolation formula Numerical differentiation Forward and Backward formula Trapezoidal formula | T ₁ &T2 | 2 2 3 3 | Chalk
&
Board,
PPT, Interactive
Whiteboarding | | |---|--|--|---|---|---|--|-------------------------| | interpolation techniques (Newton's and Lagrange's method) and numerical methods like Trapezoidal and Simpson's for differentiation and | K3 | 3.3
3.4
3.5
3.6 | Backward differences Newton's forward formula Newton's backward formula Lagrange's interpolation and Lagrange's inverse interpolation formula Numerical differentiation Forward and Backward formula Trapezoidal | T ₁ &T2 T ₁ &T2 T ₁ &T2 | 2 2 3 | &
Board,
PPT , Interactive | | | interpolation techniques (Newton's and Lagrange's method) and numerical methods like Trapezoidal and Simpson's for differentiation and | K3 | 3.4 3.5 3.6 | Newton's forward formula Newton's backward formula Lagrange's interpolation and Lagrange's inverse interpolation formula Numerical differentiation Forward and Backward formula Trapezoidal | T ₁ &T2 T ₁ &T2 | 3 | &
Board,
PPT , Interactive | | | (Newton's and Lagrange's method) and numerical methods like Trapezoidal and Simpson's for differentiation and | К3 | 3.5 | backward formula Lagrange's interpolation and Lagrange's inverse interpolation formula Numerical differentiation Forward and Backward formula Trapezoidal | T ₁ &T2 | 2 | &
Board,
PPT , Interactive | | | method) and
numerical
methods like
Trapezoidal
and
Simpson's for
differentiation
and | К3 | 3.6 | interpolation and Lagrange's inverse interpolation formula Numerical differentiation Forward and Backward formula Trapezoidal | T ₁ &T2 | 2 | 8 | | | Simpson's for differentiation and | | 3.7 | differentiation Forward and Backward formula Trapezoidal | (5/3) ^{3/2} | | | | | | | | | T ₁ &T2 | 1 | | | | | | 3.8 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | | | | | | | Simpson's formula | T ₁ &T2 | 1 | | | | is a | | | UNIT-IV | | | 100 | | | Analyze data using | | 4.1 | Basic concepts
and definition of
statistics | T ₁ &T2 | 2 | | | | statistical
measures like | | 4.2 | Mean, Median,
Mode, Standard
deviation | T ₁ &T2 | 3 | Chalk & | | | mean,
median,
mode, | Transport of the state s | Fig. | 4.3 | Coefficient of variation | T ₁ &T2 | 1 | Board, PPT, Interactive | | | ode, K4
ndard | 4.4 | Skewness and
Kurtosis | T ₁ &T2 | 2 | Whiteboarding | | | standard
deviation. | | 4.5 | correlation | T ₁ &T2 | 2 | | | | skewness,
kurtosis and
correlation
coefficients. | | 4.6 | Rank correlation
and illustratrd
examples | T ₁ &T2 | 2 | | | | 11 11 11 11 11 11 11 11 11 11 11 11 11 | statistical measures like mean, median, mode, standard deviation, skewness, kurtosis and | statistical measures like mean, median, mode, standard deviation, skewness, kurtosis and correlation | statistical measures like mean, median, mode, standard deviation, skewness, kurtosis and correlation 4.2 4.3 4.4 4.5 | statistics 4.2 Mean , Median , Mode , Standard deviation 4.3 Coefficient of variation 4.4 Skewness and Kurtosis 4.5 Karl Pearson's correlation 4.6 Rank correlation and illustratrd examples | statistical measures like mean, median, mode, standard deviation 4.3 Coefficient of variation 4.4 Skewness and Kurtosis 4.5 Karl Pearson's correlation coefficient 4.6 Rank correlation and illustratrd examples T1&T2 T2 T2 T3 T2 T3 T1 T2 T1 | statistical measures like mean, median, mode, standard deviation 4.3 Coefficient of variation 4.4 Skewness and Kurtosis 4.5 Karl Pearson's correlation coefficient 4.6 Rank correlation and illustratrd examples 4.7 Examples 4.8 Toefficient 4.9 Skewness and Toefficient 4.10 To | | | | Understand
and apply | | 5.1 | Basic concepts
and definition of
probability | TI | 3 | Cl-II. | |----------------------|---|----|-----|---|----|----|---| | | theorems of probability, | К3 | 5.2 | Probability axioms | Tl | 1 | Chalk
&
Board,
PPT, Interactive
Whiteboarding | | 9, 10 | including Baye's theorem and conditional probability to solve problems. | | 5.3 | Conditional probability | Tl | 2 | | | 9, 10 | | | 5.4 | Addition and
Multiplication
theorem of
probability | Tl | 3 | | | | | | 5.5 | Bayes theorem | | 1 | | | | problems. | | 5.6 | Problems and applications | | 2 | 1111 | | | TF | | | Mid II Exam | | | | | Total No. of Classes | | | | | | 62 | | ### Recommended Text Books for Reading: T1: Sunil S. Patil Numerical and Statistical Methods EBPB. T2: S.S. Shastry Introductory methods of Numerical Analysis PHI (New Delhi) #### Reference Text Books: R1: Gupta S.C. & Kapuram VK Fundamentals of Mathematical Statistics. Faculty Head of the Department rincipal