SWARNANDHRA COLLEGE OF ENGINEERING & TECHNOLOGY ## (Autonomous) SEETHARAMAPURAM, NARSAPUR-534280 W.G.DT. AP ### DEPARTMENT OF BACHELOR OF COMPUTER APPLICATIONS (Honours) #### TEACHING PLAN | Course Code | Course Title | Year/Sem | Branch | Contact
hr/week | Academic
Year | | |-------------|-------------------------|----------|--------------|--------------------|------------------|--| | 24BC1T04 | DIGITAL LOGIC
DESIGN | I/I | BCA(Honours) | 5 | 2024-2025 | | #### Course Objectives: The main objectives of the course are to - Understand different methods used for the simplification of Boolean functions and binary arithmetic. - Design and implement combinational circuits, synchronous & asynchronous sequential circuits. ### Course Outcomes (Cos): At the end of the course, student will able to | CO No. | Course Outcome | Knowledge Level
(K)#
K1 | | |--------|---|-------------------------------|--| | COI | Identify and recall the fundamentals of binary systems, number conversions, binary codes, and logic gates. | | | | CO2 | Apply Boolean algebra theorems and simplification techniques to minimize Boolean functions using K-Maps and tabulation methods. | К3 | | | CO3 | Analyze and design combinational circuits like adders, subtractors, multiplexers, and comparators. | K4 | | | CO4 | Demonstrate the working of synchronous sequential circuits, including flip-flops, state reduction, and clocked circuits. | К3 | | | CO5 | Design and evaluate asynchronous sequential circuits and counters, including registers and latches. | K5 | | | Week
No | Outcome | Blooms
Level | Т | opic / Activity | Text
Books | Contact
Hours | Delivery Method | |--|--|-----------------|---|---|---------------|------------------|---| | 1.0 | | | | UNIT-I | | | Hill I was | | 1,2 | Identify and recall the fundamentals | K2 | 1.1 | Introduction to
Binary Number
Syetem. | T1 | 1 | | | | of binary
systems,
number | | 1.2 | Representation of
Binary number
system | T1 | 1 | | | | conversions,
binary codes,
and logic
gates. | | 1.3 | Types of Number
systems, Number
Base
Conversions | T1 | 4 | | | | * | | 1.4 | Complements,
Signed Binary
Numbers | T1 | 2 | Chalk & | | | | | 1.5 | Binary Codes,
Binary Storage and
Registers, Binary
Logic. | T1 | 1 | Board,
PPT, Interactive
Whiteboarding | | | | | 1.6 | Introduction to
Boolean Algebra,
Basic Theorems
and Properties of
Boolean Algebra | T1 | 1 | | | | | | 1.7 | Boolean Functions,
Canonical and
Standard Forms | T1 | 1. | | | | | | 1.8 | Digital Logic
Gates. | T1 | 1 | N. T. | | | | | | UNIT-II | | | | | algebra theorems and simplification techniques to minimize Boolean functions | | lgebra | 2.1 | Introduction to
K-map method,
Types of K-Map,
Problems on K-
map method | T1 | 3 | | | | simplification
techniques to
minimize
Boolean | К3 | 2.2 | Tabular Method POS - SOP, Don't Care Conditions, NAND, NOR Implementation. | T1 | 3 | Chalk & Board, PPT, Interactive Whiteboarding | | | | 2.3 | Introduction to
Combinational
Circuit, Analysis
and Design
Procesure. | T1 | 1 | | | | | | | 2.4 | Binary Adders,
Subtractor | T1 | 2 | | |---|--|--|------------------------------------|---|--------|---------------|--| | | | | 2.5 | Decimal Adder, Binary Multiplier, Magnitude Comparator, Decoders, Encoders, Multiplexers. | TI | 3 | | | | 0 | | | Mid I Exam | 72.50 | | Ten ii ga | | | 2 | | v10-1 | UNIT-III | | pri a | 7.15 | | Ţ, | Analyze and design | esign | 3.1 | Synchronous
Sequential Logic:
Sequential
Circuits - Latche | TI | 2 | | | | combinational circuits like | | 3.2 | Flip-Flops, Types of flip flops | Tl | 4 | 11 4 11 | | 5, 6 | adders,
subtractors,
multiplexers,
and | nultiplexers,
and | 3.3 | An analysis of
Clocked
Sequential
Circuits | T1 | 2 | Chalk & Board, PPT, Interactive | | | comparators. | | 3.4 | State Reduction | T1 | 2 | Whiteboarding | | | | | 3.5 | State Assignment
Design Procedure | T1 | 2 | | | | 1 | 417 | M | UNIT-IV | KIP | 1,600 | | | the wor | Demonstrate
the working | the working
of
synchronous
sequential | 4.1 | Registers and
Counters:
Registers | Tl | 2 | Chalk & | | | synchronous | | 4.2 | Shift Registers | T1 | 3 | | | 7,8 | sequential circuits, | | 4.3 | Ripple Counters | T1 | 2 | | | 7,6 | including
flip-flops, | K3 | 4.4 | Synchronous
Counters | T1 | 2 | Board, PPT, Interactive | | state
reduction,
and clocked
circuits. | tate 4.5 eduction, nd clocked | 4.5 | Ring Counters-
Johnson Counter. | Т1 | 3 | Whiteboarding | | | | | | | UNIT-V | 47 [5] | No. | | | 9, 10 | Design and
evaluate
asynchronous
sequential | K4 | 5.1 | Asynchronous
Sequential
Circuit:
Introduction | T1 | 1 | Chalk
&
Board,
PPT, Interactive | | | circuits and counters, | | 5.2 | Analysis
Procedure | Tl | 3 | Whiteboarding | | Total No. of Classes | - | | | 60 | | |-------------------------|-----|--------------------------|----|-------|--| | To the state of | | Mid II Exam | | _="1" | | | latches | 5.4 | Design
Procedure. | T1 | 4 | | | including registers and | 5.3 | Circuits with
Latches | T1 | 4 | | #### Recommended Text Books for Reading: T1: M. Morris Mano, "Digital Design", 3rd edition, Pearson Education, Delhi, 2007 T2: Carl Hamacher, Z. Vranesic, S. Zaky: Computer Organization, 5/e (TMH). #### Reference Text Books: R1: Donald P Leech, Albert Paul Malvino and GoutamSaha, "Digital Principles and Applications", Tata McGraw Hill, 2007. Faculty (K. LAKSHMAN RAO) Head of the Department